Neural Nets for First Break Detection in Seismic Reflection Data

نویسنده

  • C H Dimitropoulos
چکیده

We present a comparative study of the performance of reported neural net algorithms for the detection of first breaks in seismic reflection data with regard to accuracy, learning rate and generalisability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Break Detection in Seismic Reflection Data with Fuzzy ARTMAP Neural Networks

In this paper we investigate the use of a supervised, but self-organizing, Adaptive Resonance Theory type of neural network (Fuzzy-ARTMAP), for first break picking in seismic reflection data. First break picking is the accurate location of the leading energy pulse received by a geophone in response to a seismic shot. The performance of Fuzzy-ARTMAP is compared to our previous work with multi-la...

متن کامل

Application of Neural Nets to Seismic Signal Analysis

We present a comparative study of the performance of reported neural net algorithms for the detection of first breaks in seismic reflection data with regard to accuracy, learning rate and generalisability. In addition we suggest a new approach that produces improved results.

متن کامل

Hough transform neural network for pattern detection and seismic applications

Hough transform neural network is adopted to detect the line pattern of direct wave and the hyperbolic pattern of reflection wave in a one-shot seismogram. We use time difference from point to hyperbola and line as the distance in the pattern detection of seismic direct and reflection waves. This distance calculation makes the parameter learning feasible. One set of parameters represents one pa...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Artificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf

Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-dimensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993